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where U(t), an N vector is the spatial discretization of u,
and A is a N 3 N matrix whose nonzero entries form aWe look at some of the issues involved in designing stable explicit

numerical schemes for linear advection equations from two per- narrow band around the diagonal. Boundary conditions
spectives: (a) in the physical domain, where each scheme represents specified at x 5 0 and x 5 L also affect the eigenvalue
a particular interpolation of discrete data, and (b) in the frequency spectrum of A.
domain, where the behavior of each scheme is determined by the

The fully discrete form of the equation is obtained onspectral characteristics of the operator that is acting on discrete data.
discretizing the temporal behavior. At time level n 1 1, UWe show that (1) the fully discrete form is equivalent to choosing a

value for the dependent variable from an interpolation of the data is expressed as
in the spatial domain at the previous time level, (2) interpolation
generates a continuous function (polynomial) in the physical space,

U n11 5 B(U n),(3) size of the time step used in updating the solution determines
the location from where the interpolated value is obtained, and (4)
if a choice of step size shows amplification in the spectral domain, where U n

j is the jth component of U at time level n.
interpolation in the physical domain exceeds the bounds set by the

The design of a numerical scheme should take into ac-discrete data at a spatial location corresponding to this step size.
count consistency, stability, and convergence characteris-Comparisons are made between the behavior of the operator in

the frequency and physical domains; and the amplification in the tics of the implementation. In the limit of temporal and
frequency domain matches the value of extrema generated by spatial steps, Dt and Dx, approaching zero, consistency
the interpolation. Examples to illustrate both perspectives include means that the fully discrete form of the equation ap-
first and second difference operators, spatial averaging, and vari-

proaches the differential equation. Expanding the fullyous central and upwind schemes for the linear advection equa-
discrete equation in a Taylors series in time and space andtion. Q 1996 Academic Press, Inc.

subtracting from the exact differential equation gives the
error in terms of the step sizes Dt and Dx. These remainder

INTRODUCTION terms show the limiting behavior of the discrete equation
as the mesh sizes shrink. The rate at which a consistent

A scalar advection equation with initial values specified scheme approaches the differential equation determines
along x, 0 # x # L, is written as the order of accuracy of the scheme.

Having discretized the equation, stability determines
whether the solution remains bounded. From the semidis-­u

­t
1 a

­u
­x

5 0, crete form of the equation we can determine if the numeri-
cal solution will remain bounded for all time. Eigenvalues
of the spatial operator A determine the boundedness of

where u(x, t 5 0) 5 u0(x) is the initial value. We need to the solution. The next step is to discretize in time and
specify appropriate boundary conditions at x 5 0 or L, advance the solution to the next time level. This step causes
depending on the sign of a. the scheme to become fully discrete and raises the possibil-

When the spatial operator is discretized, the advection ity that the solution might not remain bounded for any or
equation becomes a system of linear equations. This is the all values of the time step Dt, even though the semidiscrete
semidiscrete form (time continuous) of the advection form has a bounded solution for all time t . 0. Eigenvalues
equation. of B that determine the boundedness of the numerical

scheme depend on Dt. Such schemes are known as condi-
tionally stable schemes, and the time step value of Dt for­

­t
U 5 aAU,

which the fully discrete form has growing solutions deter-
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STABILITY AND INTERPOLATION 163

STABILITY ANALYSISmines the stability limit for the scheme. The stability limit
is a bound on Dt within which the fully discrete form of

Assuming that the semidiscrete form has bounded solu-the equation also has stable solutions for all time. The
tions (spatial discretization does not generate positivestability limit is usually presented as an upper bound on
eigenvalues for A), we can look at the fully discretethe size of the time step. However, as we show later,
form to assess the stability limits of the difference equa-schemes such as the one based on one-sided four point
tions. For linear problems, on an infinite domain or oncubic interpolation remain stable only for 1 # l # 2 (l 5
a finite domain with periodic boundary conditions, theaDt/Dx). Hence stability is more appropriately thought of
Von Neumann method of stability analysis is often used.in terms of both an upper and a lower bound for Dt for a
In this method, stability is determined by examining thegiven Dx.
amplitude of input harmonics [1]. The stability boundConvergence is a measure of the limiting behavior of the
is defined as a contour in the complex plane whichnumerical solution to the discrete equation. A numerical
determines the size of the time step Dt (or l). One

solution is said to converge if it can be made to approach,
could also use the Matrix method [2], where the norm

as closely as desired, the exact solution to the differential of the operator B determines stability. The advantage
equation by shrinking the sizes of the temporal and spatial of the matrix method is that it includes the effect of
discretizations. For well-posed problems, consistency and boundary conditions in the analysis. Furthermore, this
stability imply convergence [1]. method can be employed even on discretizations over

nonuniform meshes. When the fully discrete operator is
symmetric, stability is assured whenever the eigenvalue

INTERPOLATION AND STABILITY spectrum of the operator is contained within the unit
circle [3]. For nonsymmetric operators frequently encoun-Usually the fully discrete form of the scheme is inter-
tered in advection problems, the solution remainspreted as expressing U at the new time level in terms of
bounded at large times if the eigenvalue spectrum isthe discrete values of U at previous time levels. It does
contained in the unit circle, but it can grow in amplitudeinvolve an intermediate step, a map from Rm to Ry (from
for short times. For the solution not to have growth (in

discrete to a continuous function space) executed at each
the L2 norm) after each invocation of the operator, the

of the j that make up the spatial discretization; m is the correct measure is the matrix norm, or, equivalently, the
number of discrete values Un

j used in updating the value operator (BTB 2 I) must be negative definite [4].
Un11

j . Values in the function space generated by this map-
ping are not bounded by the values in Rm unless the entries

SPECTRAL CHARACTERISTICS OF OPERATORSof the rows of B satisfy this restriction. If new global ex-
trema are generated in the function space, it can be trans-

In the Von Neumann method, one compares the ampli-
lated back to the discrete space Rn at the new time level

tude and phase of input harmonic signals after it is acted
n 1 1, depending on the location from where the value is on by the difference scheme. The result of the analysis is
chosen to update the solution. This in turn depends on the a set of eigenvalues corresponding to eigenvectors that
size of the time step Dt. Stability of numerical schemes are harmonics of different frequencies on the grid. The
for the advection equation can therefore be viewed as a magnitude of the eigenvalues determines the amplification
requirement that the underlying interpolation should not and the imaginary part provides the phase shift in the
generate new upper or lower bounds for the discrete values frequency domain or advection in the physical domain.
of U for every frequency resolved by the grid. When a This is equivalent to studying the operator in the fre-
scheme is said to be unconditionally stable, it means that quency domain.
extrema in the function space are bounded for all values Linear operations like differentiation, averaging, advec-
of time step Dt. A scheme is conditionally stable if a t1 , tion with a constant velocity, etc. can be viewed as convolu-
Dt , t2 can be chosen so that the extrema generated in tions of input data with a response function. For the dis-
the function space is not translated to Rn at the new time crete case, the matrix representation of these operators
level n 1 1. has constants along its diagonals and is known as a Toeplitz

A scheme is said to have a perfect-shift property if for matrix or a convolution matrix. The result of these linear
certain specific values of l, the entries of Un11 are obtained operations is, in the frequency domain, the product of the
by shifting the elements of vector Un to the right by an response function and the input data [5]. In studying the
appropriate amount. This is equivalent to passing the vec- operators in the frequency domain we use the Fourier
tor through a system with a time-delay. In this case, the transform to estimate magnification as well as the phase
interpolation step from Rm to Ry is eliminated and stability shift imposed on the input data.

The frequency domain of the response function givesis not an issue.
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FIG. 1. First difference operator (three-point central stencil).

the amplification, as well as the phase shift of the convolved can be evaluated directly, but we use FFT which is more
efficient in generating this information. One call to a FFTsignal over the frequency range (2fn , 1fn) (Nyquist fre-

quency fn 5 1/2 Dx). When the fully discrete form of the [6] routine generates amplitude and phase information
over the entire frequency range for a particular step size Dt.partial differential equation is cast as a response function,

the stability bounds on the time step size can be obtained Treating operations as convolutions provides better
insight into the effect of these operations on discreteas the domain of Dt that does not generate amplification

greater than one for all frequencies resolved by the discreti- data. This approach can be used to evaluate stability
bounds when selecting numerical schemes for differentialzation. For discrete data the response function is an aggre-

gate of delta functions. The Fourier transform of a delta equations or in choosing appropriate stencils for evaluat-
ing derivatives and in designing various smoothing func-function located at j 1 1 is e i2ffDx. The sum of these delta

functions make up the representation of the operator in tions. To demonstrate the advantage of viewing the linear
operations as convolution, we first look at the frequencythe frequency domain. The amplitude and phase response

FIG. 2. (a) Amplitude response of three-point central stencil. (b) Phase response of three-point central stencil.
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domain of some of the widely used spatial operators Uj11 2 Uj21

2 Dxlike the first difference operator, the second difference
operator, and the spatial averaging operator. Central
difference operators have a poor amplitude response to
high frequency signals when estimating slopes. Upwinded whose frequency domain representation is
operators have better amplitude response, but phase
errors are large at higher frequencies. Second derivatives
are best represented by unbiased stencils, although ampli-

i
sin(2f f Dx)

Dx
e i2f f jDx

tude errors at higher frequencies are large. The frequency
domain of the spatial averaging operator shows an inter-
esting behavior. Simple averaging does not rid the data
of the highest frequency component. It does, however, with eigenvalue i (sin(2f f Dx)/Dx).
squash the component that belongs to one-half of the The corresponding response function is a delta function
Nyquist frequency. To remove high frequency data, left- centered at j 5 2, multiplied by a scalar 21/2 Dx and
or right-biased averaging or their combination is more another delta function at j 5 N multiplied by 11/2 Dx as
suitable. Following this, several numerical schemes for shown in Fig. 1.
solving the advection equation are presented, along with Spectral characteristics of this operator from a discrete
their characterization in the frequency and physical do- FFT output are shown in Figs. 2a and 2b. In the differential
mains. form, the first derivative operator should have a magnitude

of 2f f and a phase of 1f/2 for f . 0 and 2f/2 for f , 0. The
second-order accurate central difference operator does notFIRST DIFFERENCE OPERATORS
have any phase error throughout the frequency range that

In the discrete form, a delta function is approximated can be resolved on the grid, but the magnitudes at higher
by a square pulse of height 1/Dx and width Dx, centered frequencies are far from the exact value. The magnitude
at one of the locations from 0 to N 2 1 sample points that behaves as sin(2f f Dx)/Dx for 2fn # f # fn . To maintain an
make up the data space. The range of frequencies over accurate estimate of the derivative, wave numbers (wave
which amplitude and phase data can be obtained depends number of one corresponds to frequency fn) must be re-
on the Nyquist frequency 1/2 Dx, where Dx is the sampling stricted to less than about a fifth. This works out to having
interval (or step size of the spatial discretization) with a about 15 points per wavelength for the highest frequency
frequency resolution of 1/NDx. A second-order accurate contained in the discretized signal.
central difference operator for the first derivative at spatial Compared to this, the magnitude variation for a one-

sided difference operator,location j is given by

FIG. 3. (a) Amplitude response of two-point upwind stencil. (b) Phase response of two-point upwind stencil.
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2Uj12 1 8Uj11 2 8Uj21 1 Uj22

12 Dx

given by

i F2 sin(4f f Dx)
6 Dx

1
4 sin(2f f Dx)

3 Dx G
shows that the magnitude estimates are better up to a
frequency of roughly Ad of fn (Fig. 5a). This would mean
that for accurate estimates, at least nine points are needed
per wavelength at the highest frequency. The magnitude
at higher frequencies are between that of the three-point
operator and the one-sided operator. At higher fre-
quencies, magnitude drops off rapidly.

The seven-point central difference operator

Uj13 2 9Uj12 1 45Uj11 2 45Uj21 1 9Uj22 2 Uj23

60 Dx

FIG. 4. First derivative in the physical domain. which reduces to

i Fsin(6f f Dx)
30 Dx

2
9 sin(4f f Dx)

30 Dx
1

3 sin(2f f Dx)
2 Dx G

Uj 2 Uj21

Dx
in the frequency domain still does not provide better esti-
mates as can be seen from the spectrum at higher wave

(Fig. 3a), is more promising. The spectral representation is numbers (Fig. 5a), although the footprint of the stencil is
three points wide on either side of the point at which it is
applied. This stencil cannot be applied near boundaries1 2 cos(2f f Dx)

Dx
1 i

sin(2f f Dx)
Dx

. where either a three-point stencil or one-sided differences
may have to be employed. The amplitude estimates are
accurate up to about As of fn . Central difference operators
do not introduce phase errors over the entire frequencyAt the maximum frequency, the amplification is 2/Dx
range (Fig. 5b).instead of f/Dx. However, a look at the phase variation

Shifting the stencil to the left results in a upwind biased(Fig. 3c) shows that phase error varies from 2f/2 to 1f/2
stencil spanning j 2 2 to j 1 1,for frequencies 2fn to 1fn . Although the one-sided or

upwinded difference operator has better magnitude esti-
mates the phase error is nonzero at almost all frequencies. 2Uj11 1 3Uj 2 6Uj21 1 Uj22

6 DxThe result is that, on reconstruction in the physical domain,
large errors are inevitable in estimating the location of
maximal and minimal slopes. The central difference opera- with a spectral representation given by
tor does not suffer from this, although the amplitude esti-
mates are dismal. Figure 4 shows the actual and estimated
slopes from the central and one-sided difference operators 3 2 4 cos(2f f Dx) 1 cos(4f f Dx)

6 Dxfor a signal with wave number 0.75. In a scenario where
estimates for the magnitude of gradients and not the exact
location of these maxima are needed, the one-sided opera- 1 i F8 sin(2 f f Dx) 2 sin(4f f Dx)

6 Dx G
tor can do much better than the central difference operator
of higher order accuracy.

The spectrum of five-point central difference operator does better than the seven-point stencil (Fig. 6a) in estimat-
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FIG. 5. Frequency domain of central stencils: (a) amplitude response; (b) phase response.

ing the magnitude at higher wave numbers and its phase 7a). Again the central differenced operator does not intro-
duce phase error. The eigenvalue spectrum for the three-error is less than that of the first-order accurate two-point

upwind stencil (Fig. 6b). point central differenced operator is

SECOND DIFFERENCE OPERATORS abs(2 cos(2ff Dx) 2 2)
Dx2

The exact eigenvalue for the second derivative is (2ff)2,
is real with a maximum of (f/Dx)2 at the Nyquist frequency.
A three-point central difference operator estimates the with f ranging from 2fn to 1fn . At the Nyquist frequency

the estimate for the amplitude is 22/Dx2 instead of f2/Dx2.magnitude reasonably accurately up to a wave number of
little less than a half of the maximum wave number (Fig. When a five-point stencil is used, as can be seen in the

FIG. 6. (a) Amplitude response of upwind biased stencil. (b) Phase response of upwind biased stencil.
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FIG. 7. (a) Frequency domain of second difference operators (amplitude). (b) Phase response of second difference operator (upwind biased).

Fig. 7a, amplitude estimates improve but still are lacking Figure 8b shows that data containing the high frequency
component is phase shifted by f. In fact, signals at one-at higher wave numbers. Biased stencils have poor ampli-

tude response when used to evaluate the second deriva- half of the Nyquist frequency are damped out completely,
while data containing frequency close to this frequency aretive. Figure 7a shows the amplitude response for a three-

point stencil weighted to the left. Furthermore, biased damped to varying degrees (Fig. 8a). When a left- or right-
biased stencil or a combination of both is used as an averag-stencils also introduce phase errors (Fig. 7b). Attempting

to fit a cubic polynomial from j 1 1 to j 2 2 also leads ing operator, the amplitude response is similar to that of
a low-pass filter. It damps out the high frequency compo-to the three-point central stencil for the second derivative

at j. nents of the data (Fig. 8c). Biased averaging introduces
phase shifts that vary linearly from 0 to 6f/2 at the NyquistSolutions to Navier–Stokes equations require estimates

for second derivatives to evaluate the viscous transport frequency, depending on whether the right- or left-biased
stencil is used in the operator (Fig. 8d).terms. As seen from the response curves of the difference

operators, since the amplitudes at high frequency are
lower than their exact value, the decay rate of the high

DISCRETIZATIONS FOR THEfrequency will also be lower than their actual value. In
ADVECTION EQUATIONother words, high frequency is being acted on by a lower

viscosity than the low frequency components. This is
Let us look at a single hyperbolic partial differentialsimilar to pseudoplastic behavior common in the flow

equation with initial condition and for convenience let theof plastics.
boundary conditionis in x be periodic. Solutions u(x, t) for
t . 0 is of interest, and we want to construct numerical

SPATIAL AVERAGING schemes to update the solution U at a discrete set of points
from time t to a new time t 1 Dt.

Amplitude response of unbiased spatial averaging is For brevity, superscript n is omitted and Uj is used to
shown in Fig. 8a. Smoothing is accomplished by represent U n

j . Fitting a straight line in space between points
j 2 1 and j for Ũ (x) results in

Uj11 1 Uj21

2
.

Ũ (x) 5 Uj 1 FUj 2 Uj21

xj 2 xj21
G x,

Loss of high frequency information would be expected by
averaging the data. Figure 8a shows that the high frequency
information is not damped by averaging, although a phase a linear interpolation in space. Here the map takes R2 to

the continuous function space. To advance the solution aterror is introduced into the data by the averaging process.
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FIG. 8. (a) Frequency domain of unbiased averaging operator (amplitude); (b) frequency domain of unbiased averaging operator (phase). (c)
frequency domain of biased averaging operator (amplitude); (d) Frequency domain of biased averaging operator (phase).

location j by a time step Dt, we draw a characteristic line obtained with a first-order accurate upwind differencing
for Ux at location j and using a forward Euler timewith slope Dt/Dx 5 21/a and locate the intersection point

of this line with the spatial coordinate at time t, which integration to update the solution at location j to the
new time level.is 2a Dt from location j. Then

The response function for this scheme is a delta func-
tion located at j 5 1 and another located at j 5 2. The

U n11
j 5 Uj 1 FUj 2 Uj21

xj 2 xj21
G (2a Dt) multiplication factors are (1 2 l) and l at j 5 1 and

j 5 2, respectively. A fully upwind scheme is a causal
response function. Matrix representation for this schemeU n11

j 5 Uj 2 l(Uj 2 Uj21),
is lower triangular Toeplitz. Eigenvalue in the frequency
domain iswhere Dx is used to represent the mesh spacing given by

xj 2 xj21 . This step is the map back to the discrete set
at time level n 1 1. This difference scheme can be 1 2 l 1 l cos(2ff Dx) 2 i l sin(2ff Dx).
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FIG. 9. Frequency and physical domains of first-order upwind scheme: (a) amplitude response; (b) phase response; (c) wave no. 5 1.0; (d) wave
no. 5 0.5.

Spectral characteristics of this operator are shown in For the first-order upwind scheme, amplification is less
than or equal to one at all frequencies for l # 1, with theFigs. 9a and 9b. For pure advection the phase variation is

from 2fl to 1 fl in the frequency range 2fn to 1fn . higher wave numbers suffering the most damping. Phase
errors are also higher at these wave numbers. Figure 9bPhase lead or lag is determined by
shows the variation of u. At l of 0.75, u is . 1 at almost
all wave numbers, which means that the numerical solution

u 5
phase of response at frequency f

phase for pure advection at f
.

leads the exact solution (propagates with higher speed than
a). Operating with l less than one also implies that only
interpolated values for Ũ are used, with Ũ varying in aIf the value of u is greater than one, the phase of the

response function leads the phase for pure advection at linear fashion between xj21 and xj . Since the interpolation
is linear, values generated in the continuous space isthat wave number. The numerical scheme will advect a

signal with speed less than a at all wave numbers where bounded by Uj and Uj21 for all xj21 # x # xj . When l
exceeds unity, the value used to update U n11

j is an extrapo-u is less than 1.
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lation from the linear fit between Uj21 and Uj . Figures 9c and 0.5, respectively. The interpolated value crosses the
lower (21.0) or the upper bound (11.0) at x 5 21.0. Usingand 9d show the interpolated and actual data in the physical

domain for wave numbers 1 and 0.5. In both cases the a l . 1.0 to update the value at j will generate a new
global maxima or a minima for almost all wave numbers.interpolated value crosses the bounds 61.0 at x , 21.0.

Choosing the value from x 5 21.0 to update the value at In the physical domain interpolated value at x 5 21.05
is 21.2 for input at the Nyquist frequency which is thej is equivalent to integrating with l 5 1.0. Amplification

in the spectral domain corresponds to the generation of amplification obtained in the spectral domain for this wave
number at l 5 1.05. For all l # 1, amplification at allnew maxima or minima by the choice of interpolation in

the physical domain. frequencies that can be captured on the grid is #1, making
the scheme conditionally stable.At l 5 0.5 and l 5 1.0 this scheme is symmetric about

j 5 As and j 5 1, respectively. Schemes that display such
symmetry can be shown to have minimum distortion or THE THREE-POINT UPWIND SCHEME
the perfect shift property at these values for l. Figure 9b

If we restrict the interpolation domain to remain one-shows zero phase error at l 5 0.5 and l 5 1.0. For l 5
sided, ranging from j 2 2 to j and fit a parabola,0.5, eigenvalue of this scheme is

e2i2ffDx/2 cos(ff Dx),
Ũ(x) 5 Uj 1 F3Uj 2 4Uj21 1 Uj22

2 Dx G x
whose phase shift is exact but the higher frequencies are
attenuated. If the input signal were band-limited, operating

1 FUj 2 2Uj21 1 Uj22

Dx2 G x2

2
.this scheme at l will not result in appreciable loss in the

signal strength. At l 5 1.0, the eigenvalue in the frequency
domain is e2i2ffDx resulting in no phase or amplitude errors

The linear term is a second-order accurate representa-over the entire frequency spectrum. U n11 is obtained by
tion of the first derivative at j, and the coefficient of thesimply shifting the elements of U n to the right by one at
quadratic term is the second derivative at j 2 1. To updateevery time step.
the solution at j, we substitute x 5 2a Dt in the above
equation. This scheme is second-order accurate and canTHE LAX–WENDROFF SCHEME
operate in a stable fashion up to a l of 2. It has a perfect
shift at l 5 1 and l 5 2.Fitting a parabola between j 2 1(x 5 2Dx), j, and j 1

The spectral characteristics are shown in Figs. 11a and1(x 5 1Dx) for Ũ(x) results in
11b. The eigenvalue for this operator in the frequency
domain is

Ũ(x) 5 Uj 1 FUj11 2 Uj21

2 Dx G x 1 FUj11 2 2Uj 1 Uj21

Dx 2 G x2

2
.

1 2 1.5l 1 0.5l2 1 (2l 2 l2) cos(2ff Dx)

1 (20.5l 1 0.5l2) cos(4ff Dx)For advection with a . 0, the updated value at location
j is obtained from the spatial location x 5 2a Dt. The

1 i[(22l 1 l2) sin(2ff Dx)Lax–Wendroff scheme is formally second-order accurate.
This operator is no longer causal. Frequency domain repre- 1 (0.5l 2 0.5l2) sin(4ff Dx)].
sentation has the eigenvalues

In the stable range of operation, all values of l (except
1 1 l2(cos(2ff Dx) 2 1) 2 il sin(2ff Dx). 1.0 and 2.0) damp the high frequency waves. Phase errors

are larger at smaller l. Although the phase error is rela-
tively small for l 5 1.75, the amplitude damping is severeThe spectral characteristics for this scheme are given in

Figs. 10a and b. Amplification is less than unity at all wave at higher frequencies. Figure 11c shows the interpolation
in the physical domain for a wave number of 1.0. In Fig.numbers for l , 1. At l 5 0.25, damping at a higher

frequency is smaller than that at l 5 0.5 and 0.75. The 11d we see the result of interpolation for data at a wave
number of 0.5. In both these cases, new global maximanumerical solution has a large phase lag at l 5 0.25 and

0.5 at the higher frequencies. At l 5 0.75 high wave num- or minima are generated in the physical domain when l
exceeds 2.0. Although l 5 2.1 generates large amplificationbers have a phase lead, as well as more severe damping.

This scheme has a perfect shift at l of 1 and 21. Figures at the high frequencies, signals with a wave number of up
to 0.2 are not amplified (Fig. 11a). Interpolation for this10c and 10d show the interpolated and the actual data for

this scheme in the physical domain at wave numbers 1.0 wave number in the physical domain is shown in Fig. 11e.
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FIG. 10. Frequency and physical domains of Lax–Wendroff scheme: (a) amplitude response; (b) phase response; (c) wave no. 5 1.0; (d) wave
no. 5 0.5.

Only when the choice of the location from where the value 1 2 1.5l 1 2l cos(2ff Dx) 2 0.5l cos(4ff Dx)
for Ũ is chosen to update the value at j exceeds 22.25

1 i[22l sin(2ff Dx) 1 0.5l sin(4ff Dx)].
(equivalent to a l . 2.25) are new maxima generated for
data at a wave number of 0.2.

In the physical domain, this scheme is obtained from theInstead, if a three-point stencil from j 2 2 to j is used
cubic fit used in the previous example by neglecting the qua-for approximating Ux and the forward Euler is used for
dratic term. Slope at point j is obtained from the slope of atime integration, the resulting scheme is unstable at almost
cubic passing through U at j 2 2 through j, and a linear varia-all values of l. The perfect shift property is also lost. In
tion is assumed for Ũ along this slope. This scheme is first-this case Uj at time level n 1 1 is given by
order accurate and has an amplification factor greater than
one for some wavelengths at all but the smallest l (Fig. 12a),

U n11
j 5 Uj 2 l F3Uj 2 4Uj21 1 Uj22

2 G but the higher wave numbers are not affected at l smaller
than 0.5. The phase either lags or leads (Fig. 12b) at all but
the smallest wave numbers, regardless of the value of l usedwhose eigenvalue in the frequency domain is



FIG. 11. Frequency and physical domains of scheme based on quadratic fit: (a) amplitude response; (b) phase response; (c) wave no. 5 1.0; (d)
wave no. 5 0.5; (e) wave no. 5 0.2.
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FIG. 12. Frequency and physical domains of scheme based on three-point fit for ux: (a) amplitude; (b) phase response; (c) wave no. 5 1.0; (d)
wave no. 5 0.5; (e) wave no. 5 0.2.

174



STABILITY AND INTERPOLATION 175

FIG. 13. Frequency and physical domains of scheme based on cubic fit: (a) amplitude response; (b) phase response; (c) wave no. 5 1.0; (d)
wave no. 5 0.5.

in the integration. Figures 12c–e show the interpolation in THE FOUR-POINT UPWIND SCHEME
the physical domain. Amplification for the highest wave

Increasing the degree of the polynomial to 3 results innumber in the frequency domain (Fig. 12a) is 1 for l 5 0.5
a cubic fit from j 2 3 to j:and is verified by Fig. 12c, showing the interpolation in the

physical domain. At x 5 20.5 (l 5 0.5), the interpolated
curve crosses the lower bound 21.0 and for all l . 0.5, new Ũ(x) 5 Uj 1 FUj 2 3Uj21 1 3Uj22 2 Uj23

Dx3 G x3

6minima arise. Figure 12d shows the interpolated value gen-
erating a maxima (1.12) at a spatial location of 20.5 for a
wave number equal to a half. The amplification for l 5 0.5 1 F2Uj 2 5Uj21 1 4Uj22 2 Uj23

Dx2 G x2

2in the spectral domain for wave number 0.5 is also 1.12. At
a lower frequency, a wave number 50.2, minimum in the

1 F11Uj 2 18Uj21 1 9Uj22 2 2Uj23

6Dx Gx.physical domain (Fig. 12e) is 21.04. The amplification from
the frequency domain at l 5 0.5 is also 1.04 at this wave
number.This schemeis notsuitable foradvectionequations. Integration of the advection equation is accomplished



176 PALANISWAMY AND CHAKRAVARTHY

by replacing x by 2a p Dt. This scheme is stable for equivalent to choosing a value from the interpolated value
at the previous time level and that the location from where1 # l # 2 and is third-order accurate. In this range,

the amplification does not exceed 1 at all wave numbers, the interpolated value is chosen is determined by l. We
have shown that, when the amplification factor for certainbut the scheme can have growing modes for l in the

range 0 to 1 as well as above 2 (Figs. 13a and 13b). In wave numbers at a fixed l is greater than one in the fre-
quency domain, a corresponding extremum occurs in thethe stable range, l 5 1.5 has good phase characteristics

(no lag or lead over the entire spectrum), but the damping physical domain at that spatial location for input at that
frequency. The location at which the interpolation crossesat high wave numbers is large. The eigenvalue of this

scheme is the bounds at time level n determines the boundary of a
stable operation. The absolute value of this extrema in the
physical domain matches the amplification factor from the1 2 AyAl 1 l2 2 Ahl3

frequency domain.
1 (3l 2 2.5l2 1 0.5l3)(cos(2ff Dx) 2 i sin(2ff Dx)) For a numerical scheme for the advection equation to

be stable, the choice of interpolation is critical. It deter-1 (21.5l 1 2l2 2 0.5l3)(cos(4ff Dx) 2 i sin(4ff Dx))
mines the stability bounds within which an explicit numeri-

1 (Adl 2 0.5l2 1 Ahl3)(cos(6ff Dx) 2 i sin(6ff Dx)). cal scheme can safely integrate the equation. Smart inter-
polation schemes that do not generate extrema should

Next we look at the interpolation in the physical domain therefore lead to more stable explicit schemes. The inter-
using the third-order polynomial given above. For data at polation has to meet this criterion over all frequency ranges
the Nyquist frequency (Fig. 13c) interpolation shows a that can be captured on the grid. TVD [7] and ENO [8]
lower minima, 21.1875, at a x location of x 5 20.75. The schemes meet this criterion. The spectral characteristics of
original data is a sine wave at the Nyquist frequency, with implicit schemes will be presented in a separate paper.
a phase shift of f/2. In the frequency domain (Fig. 13a)
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